NNDÍK®

LONG - REACH NOZZLE DDM II

These technical specifications state a row of manufactured sizes and models of long-reach nozzles (further only nozzles) DDM II. It is valid for production, designing, ordering, delivery, assembly and operation.

I. CONTENT

II. GENERAL INFORMATION	2
1. Description	2
2. Design	2
3. Dimensions, weights	3
4. Placement and Assembly	5
III. TECHNICAL DATA	6
5. Basic data	6
6. Electrical components, wiring diagrams	7
7. Aerodynamic data	8
IV. MATERIAL, FINISHING	12
8. Material and finishing	12
V. TRANSPORTATION AND STORAGE	12
9. Logistic terms	12
VI. ORDERING INFORMATION	12
10. Ordering key	12

II. GENERAL INFORMATION

1. Description

1.1. Long-reach nozzles are end parts of air handling, air conditioning or heating systems. Nozzles are designed to supply air to the occupied zone for long distance. The temperature difference between the supplied air and the air in the room deflected air stream. This stream could be deflected by internal environment in the room. In heating, ventilation and cooling modes supplied air stream direction has to changed according optimal air distribution requirements in the occupied area.

Nozzles could be adjusted manually or by using of actuating mechanism. Fixed nozzles are also manufactured. In this case air stream direction cannot be changed. Adjustable nozzles DDM II/N consist of spherical discharge nozzle placed in the nozzle body and a cylindrical protective ring which cover mounting holes. Adjustable nozzles DDM II/S are equipped by actuating mechanism. For DDM II/N air stream direction can be changed according table 2.1.1. in all directions. For DDM II/S air stream direction can be changed only in one axis.

1.2. Working conditions

Temperature in the place of installation is permitted to range from - 20°C to + 70°C. If electrical components are used the temperature range is limited by these components.

Nozzles are designed for macroclimatic areas with mild climate according to EN 60 721-3-3.

Nozzles are suitable for systems without abrasive, chemical and adhesive particles.

2. Design

- **2.1.** According to the possibility of adjusting the air stream direction, the nozzles can be delivered in the following versions:
 - Fixed DDM/P
 - Manually adjustable DDM II/N
 - Adjustable by actuating mechanism, position control 230V, DDM/S .45
 - Adjustable by actuating mechanism, position control 24V, DDM/S .55
 - Adjustable by actuating mechanism, continuous control 24V SR, DDM II/S.57.

Fig. 1

Tab. 2.1.1. Angle

Size	100	125	160	200	250	315	400
*Angle	±17°	±18°	±23°	±24°	±24°	±25°	±25°

* Air stream direction can be changed: DDM II/N – in all directions

DDM II/S – in one axis only.

Tab. 2.1.2. Actuating mechanisms

Size	Actuating mechanism	Torque (Nm)	Power supply (V)*	Power con- sumption in operation (W)	Weight (kg)
400 405	LM 230A	5	AC 230	1,5	0,5
100, 125, 160	LM 24A	5	AC/DC 24	1	0,5
	LM 24A-SR	5	AC/DC 24	1	0,5
	NM 230A	10	AC 230	2,5	0,8
200, 250, 315, 400	NM 24A	10	AC/DC 24	15	0,75
	NM 24A-SR	10	AC/DC 24	2	0,8

* Pro frequency 50Hz

3. Dimestions, weights

3.1. Dimensions

Tab. 3.1.1. Fixed nozzles DDM/P

Size	ØD1	ØD2	ØD ₃	$Ø D_6$	L ₁	b
90	90	50	120	105	100	15
130	130	70	160	145	140	15
180	185	105	215	200	185	15
250	255	140	285	267	230	15
315	315	175	355	340	255	20
400	375	230	415	395	292	20

Tab. 3.1.2. Adjustable nozzles	DDM II/N and DDM II/S
--------------------------------	-----------------------

Size	Ø D1	ØD2	ØD4	Ø D₅	E	С	L ₂	L ₃	L4	L ₅	Ls	Lu
100	98	50	104	136	65	16	94	45	50	114	207	30
125	123	64	130	157	75	16	112	50	50	127	200	30
160	158	81,5	166	191	75	17	124	45	50	144	207	30
200	198	108	206	233	75	22	133	40	50	164	207	30
250	248	136	256	281	100	22	171	55	50	189	207	35
315	313	174	321	346	120	24	212	67	50	222	215	40
400	398	229	406	431	125	28	239	60	50	264	220	40

Fig. 3 Adjustable nozzle with actuating mechanism DDM II/S

3.2. Weights

Tab 3.2.2. Fixed nozzles

Size DDM/P	Weight
90	0,05
130	0,10
180	0,35
250	0,45
315	0,70
400	1,10

Tab 3.2.2. Adjustable nozzles

Size	Weight				
Size	DDM II/N	DDM II/S			
100	0,42	1,4			
125	0,56	1,7			
160	0,80	1,9			
200	1,10	2,6			
250	1,58	3,1			
315	2,43	4,1			
400	3,70	5,4			

4. Placement and Assembly

ΜΛΝϽίκ[®]

4.1. The fixed nozzles DDM/P and manually adjustable nozzles DDM II/N are installed in the sides of rectangular ducts or axially on spiro duct. They are equipped by pre-drilled holes for mounting.

Nozzles with actuating mechanism has extended body with actuating mechanism holder. Actuating mechanisms are fixed and set upped. End positions of actuating mechanism are secured by color mark. If is the color corrupted, the warranty expires.

- 4.2. Nozzle installation examples
- Fig. 5 Fixed nozzle DDM/P installed in the sides of rectangular ducts

Fig. 7 Manually adjustable nozzle DDM II/N installed in the sides of rectangular ducts

* Dimmension Z acc. Tab. 4.1.1.

duct with adapter (adapter is not part of nozzle)

Fig. 6 Fixed nozzle DDM/P installed axially on spiro

Fig. 8 Manually adjustable nozzle DDM II/N installed axially on spiro duct

Fig. 9 Manually adjustable nozzle DDM II/N installed in gypsum wall

Tab. 4.1.1. Dimmensions by installation in gypsum wall

Size	Y	Z	Number of screws
100	106	118	
125	132	144	
160	168	178	
200	208	218	3
250	258	268	
315	323	333	
400	408	418	

III. TECHNICAL DATA

5. Basic data

5.1. Volumetric air flow and effective area

Tab. 5.1.1. Technical data

Size	100	125	160	200	250	315	400
Ů _{min} [m³.h⁻¹]	40	60	90	160	240	450	750
\mathring{V}_{max} [m ³ .h ⁻¹]	100	160	280	450	700	1200	2400
S _{ef} [m ²]	0,0019	0,0032	0,0052	0,0092	0,0145	0,0238	0,0412

6. Electrical components, wiring diagram

Fig. 10 Wiring diagram - actuating mechanism Belimo NM 230A a LM 230A

Fig. 11 Wiring diagram - actuating mechanism Belimo NM 24A a LM 24A

Fig. 12 Wiring diagram - actuating mechanism Belimo NM 24A-SR a LM 24A-SR

7. Aerodynamic data

7.1. Air stream diagram

Fig. 14 Air stream diagram - isothermal air supply

Fig. 15 Air stream diagram - warm air supply

Ů	[m ³ .h ⁻¹]	volumetric air flow for one nozzle
А	[m]	axis distance between two nozzles in a row
В	[m]	horizontal distance from nozzle to meeting of two streams
L	[m]	length of stream by isothermal conditions
L _P	[m]	max. penetration of warm stream aimed downward
Н	[m]	distance between nozzle and floor
H ₁	[m]	distance between two streams meeting point and occupied area
H ₂	[m]	distance between two streams meeting point and nozzle axis intersection (by isothermal conditions)

у	[m]	deviation of air stream
α_{T}	[°]	angle of nozzle's setting during heating
α_{κ}	[°]	angle of nozzle's setting during cooling
\overline{W}_L	[m.s⁻¹]	mean air stream velocity in distance L
\overline{W}_{H1}	[m.s⁻¹]	mean air stream velocity in occupied area
W _{ef}	[m.s⁻¹]	nozzle effective velocity
Δt_p	[K]	difference between supplied air temperature and temperature in the room
Δt_L	[K]	difference between temperature in stream axis in the distance L and temperature in the room
Δt_{H1}		difference between temperature in stream axis when entering occupied ar- ea and temperature in the room
Δp_c	[Pa]	total pressure loss by ρ = 1,2 kg.m ⁻³
Lwa	[dB(A)]	level of acoustic output
S _{ef}	[m ²]	effective area

7.2. Pressure loss and sound data

Diagram 7.3.2. Air stream deviation

Diagram 7.5.1. Temperature coefficient

ΜΛΝϽίκ

7.6. Flow velocity in occupied area

Fig. 16 Example

Given data:	Ů = 1100 m³.h⁻¹, B = 13 m, H = 6 m	
	Cooling: ∆t _p = -8 K	Heating: ∆t _p = +5 K
	$\alpha_{\rm K} = 20^{\circ}$	\overline{w}_{L} = 1,2 m.s ⁻¹
	Diagram 7.2.2. : L _{WA} = 40 dB(A)	
	∆p _c = 100 Pa	
	Nozzle: DDM II 315/S	
Cooling:	L = B / $\cos \alpha_{K}$ = 13 / 0,94 = 13,8 m	
	Diagram 7.3.1. : w _L = 1,2 m.s ⁻¹	
	Diagram 7.3.2. : y = 1 m	
	H_2 = tan α_K . B = 0,36 . 13 = 4,7 m	
	$H_1 = H - 1,8 + H_2 - y = 6 - 1,8 + 4,7 - 1 = 7,9 m$	
	Diagram 7.5.1.: ₩ _{H1} < 0,1 m.s ⁻¹	
Isothermal:	L = B = 13 m	
	Diagram 7.3.1. : w _L = 1,3 m.s⁻¹	
	H ₁ = H – 1,8 = 4,2 m	
	Diagram 7.6.1. : w _{H1} = 0,15 m.s⁻¹	
Heating	L = 14 m	
	Diagram 7.3.2. : y = 0,7 m	
	$\sin \alpha_T = (H - 1,8 + y) / L = (6 - 1,8 + 0,7) / 14 = 0,35$	
	$\alpha_T = 21^{\circ}$	

IV. MATERIAL, FINISHING

- 8. Material and finishing
 - **8.1.** Spherical discharge nozzle and nozzle body are made of aluminium and the other components of galvanized sheet. Spherical discharge nozzle, nozzle body and cylindrical protective ring are coated by color RAL 9010. If other color is requested, please contact manufacturer.

V. TRANSPORTATION AND STORAGE

9. Logistic terms

- **9.1.** Nozzles are supplied packed in carton packaging. While transported and stored they must be protected against mechanical damage and weather conditions.
- **9.2.** Nozzles have to be stored in closed premises, in the environment without aggressive steams, gases and dusts. Temperature range have to be from -5 to +40°C and relative humidity max. 80%.

VI. ORDERING INFORMATION

10. Ordering key

MANDÍK a.s. Dobříšská 550 26724 Hostomice Czech Republic Tel.: +420 311 706 706 Fax: +420 311 584 810, 311 584 382 E-Mail: mandik@mandik.cz www.mandik.com